Evaluation Over Thousands of Queries

Ben Carterette
James Allan

Virgil Pavlu
Evangelos Kanoulas
Javed Aslam
TREC 2007 Million Query Track

- **Questions:**
 - Can low-cost methods reliably evaluate retrieval systems?
 - Is it better to judge a lot of documents for a few queries or a few documents for a lot of queries?

- **Experiment overview:**
 - Retrieval task: ad hoc.
 - Corpus: GOV2 (25M web pages).
 - Queries: 10,000 queries sampled from logs of a search engine.
 - Evaluate 24 retrieval runs from 10 participating sites.
Queries

- 10,000 queries sampled from logs of a search engine.
- Each had at least one click on a web page in the .gov domain.
 - Assumption: at least one relevant web page in corpus.

Example queries:
- arnold shwartzenegger
- health care facility stress
- fairfax county va divorce
- crown vetch seed
- ayanna
Retrieval Runs

- 24 runs from 10 sites.

- **Different retrieval engines:**
 - Lemur, Indri, Lucene, Zettair, among others.

- **Different retrieval models:**
 - Vector space, language modeling, inference networks, dependence models.
 - Pseudo-relevance feedback, external expansion, network-link models, HTML structure.

- **Different stemmers:**
 - Porter, Krovetz.

- **Different stop lists.**
Assessors

- Three groups of assessors:
 - NIST, participating sites, UMass undergrads.
- Given instructions and trained on a query.
- Given a list of 10 queries, picked one to judge.
- Develop query into topic by “back-fitting”:
 - Imagine what information need might presage selected query.
 - Write full description of information need.
 - Explain what information on a page would make it relevant, and notable types of related information that are not relevant.
Implemented two low-cost algorithms.

- “MTC” – UMass’ algorithmic selection method.
 - Carterette, Allan, & Sitaraman, 2006.
- “statAP” – NEU’s statistical sampling method.

Each query served by either MTC, statAP, or an alternation of the two.

Required at least 40 judgments for each query.
MTC – Algorithmic Document Selection

- Given two ranked lists, how few documents do we need to judge to discriminate them?

Limiting case: ranked lists are identical; no judgments needed.

If two documents swap, they become most interesting.

A document ranked by one system but not the other is interesting.

Limiting case: ranked lists are completely different, but relevance is the same at every rank.
MTC – Algorithmic Document Selection

- Assign each document a weight according to its potential contribution to understanding the difference in AP.

\[
AP_1 = \frac{1}{R} \left(x_A + x_B \left(\frac{x_A + x_B}{2} \right) + x_C \left(\frac{x_A + x_B + x_C}{3} \right) + \cdots \right)
\]

- Judge top-weighted document.

- Update weights to reflect new info.

\[
AP_2 = \frac{1}{R} \left(x_D + x_F \left(\frac{x_D + x_F}{2} \right) + x_G \left(\frac{x_D + x_F + x_G}{3} \right) + \cdots \right)
\]

\[\Delta AP = AP_1 - AP_2\]

Greatest-weight documents generally at a high rank in one system and a low rank in the other.
Expected Mean Average Precision

- Let X_i be a random variable representing the relevance of document i.
- Let $p_i = P(X_i = 1)$.
- Then:

$$E[AP] = \frac{1}{\sum p_i} \left(\sum_{i=1}^{n} \frac{1}{i} p_i + \sum_{i=1}^{n} \sum_{j>i} \frac{1}{j} p_i p_j \right)$$

$$EMAP = \frac{1}{T} \sum E[AP]$$

- Probabilities p_i estimated using expert aggregation (Carterette 2007).
NEU statAP Method

- **Goal**: unbiased, low variance estimates of AP, ...
- **Method**: statistical sampling and evaluation
 - survey theory, market research, medical studies, ...
- **Analogy**: election forecasting
 - implicit evaluation distribution
 - often uniform
 - explicit sampling distribution
 - designed for accuracy (low variance)
 - inclusion probability measures “sampling bias”
- **estimator**
 - given sample and inc. prob., produces unbiased estimates
NEU statAP Method

- three independent modules
 - each of them can be chosen in many ways
 - central: the sample (relevance + incl prob)
 a.k.a. probabilistic qrel

1: prior
2: sampling
3: evaluation

- ranked list
- ranked list
- ranked list

- sampling distribution over docs (average)
- distribution over docs
- distribution over docs
- distribution over docs
- inclusion prob
- relevance
- variance

- Evaluation
- AP
- RP
- PC
- \(\hat{R} \)
NEU statAP Sampling

- given a set of ranked lists, choose a prior of relevance over documents considering ranks

- sample in 3 stages:
 - group the docs in buckets of size $m = \text{sample size desired}$ ($m=14$ in the example)
 - sample the buckets with repetition m times according with cumulative bucket weight (register the hits)
 - randomly pick in each bucket a number of docs equal with the number of hits registered at step two. The inclusion probability of each doc is the cumulative weight of the bucket containing that doc.
Define a weight associated with a rank in a list (|s|=length of list s).

Prior at rank r is the sum of weights accumulated by a document over all ranked lists:

\[w_s(r) = \frac{1}{2|s|} \left(1 + \frac{1}{r} + \frac{1}{r+1} + \ldots + \frac{1}{|s|} \right) \approx \frac{1}{2|s|} \log \frac{|s|}{\text{rank}(d, s)} \]

Document prior is then:

\[\text{Prior}(d) \approx \sum_s w_s(\text{rank}(d, s)) \]
NEU statAP Evaluation

- Given a sample of docs and associated relevance and inclusion probabilities \(\{rel_k, \pi_k\} \), we apply survey theory to estimate:
 - Precision at rank \(r \):
 \[
 \hat{PC}(r) = \frac{1}{r} \sum_{rank(k) \leq r} \frac{rel_k}{\pi_k}
 \]
 - Number of relevant docs (in collection):
 \[
 \hat{R} = \sum_{rel_k=1} \frac{1}{\pi_k}
 \]
 - AP:
 \[
 \hat{AP} = \frac{\sum_{r_k=1} \hat{PC}(rank(k))/\pi_k}{\sum_{rel_k=1} 1/\pi_k}
 \]
Relevance Judgments

- 1,692 of the 10,000 queries judged.
 - 429 by MTC (UMass).
 - 443 by statAP (NEU).
 - 801 by alternation.

- 69,730 total judgments, roughly 40 per query.
 - Comparable to past years’ totals with 50 queries and pooling.

- 10.62 relevant documents per query on average.
 - 25% relevant.
 - Greater percentage than usual.

- Assessors judged 40 documents in about 14 minutes.
 - About 21 seconds per judgment.
Results

- “Baseline”: TREC queries 701-850.
 - “Full” judgments.
 - Seeded into 10,000 sampled queries.
Comparison of Mean Scores
Analysis

- Do we need thousands of queries to reach the same conclusions?

Analysis of variance (ANOVA):
 - How much of the variance in MAP is due to the topics?
 - How many topics are needed to keep that variance low?

Cost analysis:
 - How few queries and how few judgments per query are needed to reach a stable conclusion?
Efficiency Studies

- Systems run on a specific set of topics
 - Performance of each system measured by Mean Average Precision

- Systems run on a second set of topics

- How many queries are necessary so as
 - Ranking of systems is the same for both sets
 - Mean Average Precision values are the same for both sets

- How quickly in terms of queries one can arrive at accurate evaluation results
Variance in Average Precision values

10 systems, 39 TB topics
Average Precision Variance Components

\[AP(s_k, q_t) \]

\[\sigma^2(\text{AP}(s, q)) \]

due to the system

\[\sigma^2(\nu_s) \]

due to the topic

\[\sigma^2(\nu_q) \]

due to the interaction between the system and the topic

\[\sigma^2(\nu_{sq}) \]

\[E_s E_q [\text{AP}(s, q)] = \mu \]
Experimental Setup

- **Analysis of Variance**
 - 429 topics exclusively selected by MTC with 40 relevance judgments per topic
 - 459 topics exclusively selected by statAP with 40 relevance judgments per topic

- The ratio of variance due to system and the total variance

- The ratio of variance due to system and the variance that affect the ranking of systems
Average Precision Variance Components

- **statAP**
 - $\sigma^2(v_s) = 0.0069$ or 11% of the total variance
 - $\sigma^2(v_q) = 0.0247$ or 40% of the total variance
 - $\sigma^2(v_{sq}) = 0.0311$ or 49% of the total variance

- **MTC**
 - $\sigma^2(v_s) = 0.0007$ or 9% of the total variance
 - $\sigma^2(v_q) = 0.0054$ or 69% of the total variance
 - $\sigma^2(v_{sq}) = 0.0017$ or 22% of the total variance
MAP Variance Components

$\text{MAP}(s_k, Q_l)$

due to the system

due to the set of topics

due to the interaction between the system and the set of topics

$\sigma^2(\text{MAP}(s, Q))$

$\sigma^2(v_s)$

$\sigma^2(v_Q) = \frac{\sigma^2(v_q)}{n_q}$

$\sigma^2(v_{sQ}) = \frac{\sigma^2(v_{sq})}{n_q}$

$E_s E_Q [\text{MAP}(s, Q)] = M$
MAP Variance Components
Cost Analysis

- What is the minimum cost needed to reach final result?
 - Or Kendall’s tau = 0.9 with final result.
- Simulate judging with increasing numbers of queries and increasing numbers of judgments per query.
 - MTC can be stopped at any point.
 - statAP can use 20 judgments or 40 judgments per query.
Cost Analysis

- Estimate assessor time:
 - Time ≈ 5 min to develop query * # of queries
 - + 21s to judge a document * total # of judgments

![Graph showing the relationship between judgments per query and assessor time. The graph indicates that as the number of judgments per query decreases, the hours of assessor time increase.]
Conclusion

- Low-cost methods reliably evaluate retrieval systems with very few judgments.

- Both methods accomplish their respective goals:
 - statAP more successfully estimates MAP.
 - MTC more successfully converges on a correct ranking.

- Both methods work with only a few hundred topics and a few dozen judgments per topic.